Abstract
Growing experimental and theoretical evidence suggests a functional synergy in the processing of otolith and semicircular canal signals for the generation of the vestibulo-ocular reflexes (VORs). In this study we have further tested this functional interaction by quantifying the adaptive changes in the otolith-ocular system during both rotational and translational movements after surgical inactivation of the semicircular canals. For 0.1-0.5 Hz (stimuli for which there is no recovery of responses from the plugged canals), pitch and roll VOR gains recovered during earth-horizontal (but not earth-vertical) axis rotations. Corresponding changes were also observed in eye movements elicited by translational motion (0.1-5 Hz). Specifically, torsional eye movements increased during lateral motion, whereas vertical eye movements increased during fore-aft motion. The findings indicate that otolith signals can be adapted according to a compromised strategy that leads to improved gaze stabilization during motion. Because canal-plugged animals permanently lose the ability to discriminate gravitoinertial accelerations, adapted animals can use the presence of gravity through otolith-driven tilt responses to assist gaze stabilization during earth-horizontal axis rotations.
Original language | English (US) |
---|---|
Pages (from-to) | 1635-1640 |
Number of pages | 6 |
Journal | Journal of neurophysiology |
Volume | 87 |
Issue number | 3 |
DOIs | |
State | Published - 2002 |
ASJC Scopus subject areas
- General Neuroscience
- Physiology