Increased variability but intact integration during visual navigation in Autism Spectrum Disorder

Jean Paul Noel, Kaushik J. Lakshminarasimhan, Hyeshin Park, Dora E. Angelaki

Research output: Contribution to journalArticlepeer-review


Autism Spectrum Disorder (ASD) is a common neurodevelopmental disturbance afflicting a variety of functions. The recent computational focus suggesting aberrant Bayesian inference in ASD has yielded promising but conflicting results in attempting to explain a wide variety of phenotypes by canonical computations. Here, we used a naturalistic visual path integration task that combines continuous action with active sensing and allows tracking of subjects' dynamic belief states. Both groups showed a previously documented bias pattern by overshooting the radial distance and angular eccentricity of targets. For both control and ASD groups, these errors were driven by misestimated velocity signals due to a nonuniform speed prior rather than imperfect integration. We tracked participants' beliefs and found no difference in the speed prior, but there was heightened variability in the ASD group. Both end point variance and trajectory irregularities correlated with ASD symptom severity. With feedback, variance was reduced, and ASD performance approached that of controls. These findings highlight the need for both more naturalistic tasks and a broader computational perspective to understand the ASD phenotype and pathology.

Original languageEnglish (US)
Pages (from-to)11158-11166
Number of pages9
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number20
StatePublished - May 19 2020


  • Autism
  • Multisensory
  • Navigation
  • Optic flow
  • Path integration

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Increased variability but intact integration during visual navigation in Autism Spectrum Disorder'. Together they form a unique fingerprint.

Cite this