Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains

Shivang Hina Nilesh Joshi, Chentao Yong, Andras Gyorgy

Research output: Contribution to journalArticlepeer-review

Abstract

The ability to externally control gene expression has been paradigm shifting for all areas of biological research, especially for synthetic biology. Such control typically occurs at the transcriptional and translational level, while technologies enabling control at the DNA copy level are limited by either (i) relying on a handful of plasmids with fixed and arbitrary copy numbers; or (ii) require multiple plasmids for replication control; or (iii) are restricted to specialized strains. To overcome these limitations, we present TULIP (TUnable Ligand Inducible Plasmid): a self-contained plasmid with inducible copy number control, designed for portability across various Escherichia coli strains commonly used for cloning, protein expression, and metabolic engineering. Using TULIP, we demonstrate through multiple application examples that flexible plasmid copy number control accelerates the design and optimization of gene circuits, enables efficient probing of metabolic burden, and facilitates the prototyping and recycling of modules in different genetic contexts.

Original languageEnglish (US)
Article number6691
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains'. Together they form a unique fingerprint.

Cite this