TY - GEN
T1 - Influence of leaders on mean square consentability in biologically-inspired stochastic networks
AU - Abaid, Nicole
AU - Porfiri, Maurizio
PY - 2011
Y1 - 2011
N2 - In this work, we study a discrete-time consensus protocol for a group of agents which communicate over a class of stochastically switching networks inspired by fish schooling. The network model incorporates the phenomenon of numerosity that has a prominent role on the collective behavior of animal groups by defining the individuals' perception of numbers. The agents comprise leaders, which share a common state, and followers, which update their states based on information exchange among neighboring agents. We write a closed form expression for the asymptotic convergence factor of the protocol, which measures the decay rate of disagreement among the followers' and the leaders' states. Numerical simulations are conducted to validate analytical results and illustrate the consensus dynamics as a function of the group size, number of leaders in the group, and the numerosity.
AB - In this work, we study a discrete-time consensus protocol for a group of agents which communicate over a class of stochastically switching networks inspired by fish schooling. The network model incorporates the phenomenon of numerosity that has a prominent role on the collective behavior of animal groups by defining the individuals' perception of numbers. The agents comprise leaders, which share a common state, and followers, which update their states based on information exchange among neighboring agents. We write a closed form expression for the asymptotic convergence factor of the protocol, which measures the decay rate of disagreement among the followers' and the leaders' states. Numerical simulations are conducted to validate analytical results and illustrate the consensus dynamics as a function of the group size, number of leaders in the group, and the numerosity.
UR - http://www.scopus.com/inward/record.url?scp=84881428662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881428662&partnerID=8YFLogxK
U2 - 10.1115/DSCC2011-6051
DO - 10.1115/DSCC2011-6051
M3 - Conference contribution
AN - SCOPUS:84881428662
SN - 9780791854754
T3 - ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
SP - 1
EP - 8
BT - ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
T2 - ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Y2 - 31 October 2011 through 2 November 2011
ER -