Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations

Petra C. Guess, Stefan Schultheis, Martin Wolkewitz, Yu Zhang, Joerg R. Strub

Research output: Contribution to journalArticle

Abstract

Statement of problem Preparation designs and ceramic thicknesses are key factors for the long-term success of minimally invasive premolar partial coverage restorations. However, only limited information is presently available on this topic. Purpose The purpose of this in vitro study was to evaluate the fracture resistance and failure modes of ceramic premolar partial coverage restorations with different preparation designs and ceramic thicknesses. Material and methods Caries-free human premolars (n=144) were divided into 9 groups. Palatal onlay preparation comprised reduction of the palatal cusp by 2 mm (Palatal Onlay Standard), 1 mm (Palatal-Onlay-Thin), or 0.5 mm (Palatal Onlay Ultrathin). Complete-coverage onlay preparation additionally included the buccal cusp (Occlusal Onlay Standard; Occlusal Onlay Thin; Occlusal Onlay Ultrathin). Labial surface preparations with chamfer reductions of 0.8 mm (Complete-Veneer-Standard), 0.6 mm (Complete-Veneer-Thin), and 0.4 mm (Complete Veneer Ultrathin) were implemented for complete veneer restorations. Restorations were fabricated from a pressable lithium disilicate ceramic (IPS-e.max-Press) and cemented adhesively (Syntac-Classic/Variolink-II). All specimens were subjected to cyclic mechanical loading (F=49 N, 1.2 million cycles) and simultaneous thermocycling (5 C to 55 C) in a mouth-motion simulator. After fatigue, restorations were exposed to single-load-to-failure. Two-way ANOVA was used to identify statistical differences. Pair-wise differences were calculated and P-values were adjusted by the Tukey-Kramer method (α=.05). Results All specimens survived fatigue. Mean (SD) load to failure values (N) were as follows: 837 (320/Palatal-Onlay-Standard), 1055 (369/Palatal-Onlay-Thin), 1192 (342/Palatal-Onlay-Ultrathin), 963 (405/Occlusal-Onlay-Standard), 1108 (340/Occlusal-Onlay-Thin), 997 (331/Occlusal-Onlay-Ultrathin), 1361 (333/Complete-Veneer-Standard), 1087 (251/Complete-Veneer-Thin), 883 (311/Complete-Veneer-Ultrathin). Palatal-onlay restorations revealed a significantly higher fracture resistance with ultrathin thicknesses than with standard thicknesses (P=.015). Onlay restorations were not affected by thickness variations. Fracture loads of standard complete veneers were significantly higher than thin (P=.03) and ultrathin (P<.001) restorations. Conclusions In this in vitro study, the reduction of preparation depth to 1.00 and 0.5 mm did not impair fracture resistance of pressable lithium-disilicate ceramic onlay restorations but resulted in lower failure loads in complete veneer restorations on premolars.

Original languageEnglish (US)
Pages (from-to)264-273
Number of pages10
JournalJournal of Prosthetic Dentistry
Volume110
Issue number4
DOIs
StatePublished - Oct 2013

ASJC Scopus subject areas

  • Oral Surgery

Fingerprint Dive into the research topics of 'Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations'. Together they form a unique fingerprint.

  • Cite this