Influences of starch and sucrose on Streptococcus mutans biofilms

S. Duarte, M. I. Klein, C. P. Aires, J. A. Cury, W. H. Bowen, H. Koo

    Research output: Contribution to journalArticlepeer-review


    Introduction: The combination of starch and sucrose has been shown to be potentially more cariogenic than either alone. The aim of this study was to examine the influence of starch and sucrose, alone or in combinations, on formation, polysaccharide composition, gene expression, and acidogenicity of Streptococcus mutans biofilms. Methods: S. mutans UA159 biofilms were formed on saliva-coated hydroxyapatite (sHA) discs in batch culture for 5 days in the presence of 1% (weight/volume) starch, 1% sucrose, 1% starch plus 1% sucrose, 1% starch plus 0.5% fructose plus 0.5% glucose, or 1% sucrose plus 1% glucose. Results: Amylase activity from sHA disks was detected up to 48 h, thereby increasing the availability of reducing sugars and acidogenicity in the early stages of biofilm development. S. mutans grown in the presence of sucrose alone or in combinations formed well-defined and tightly adherent biofilms comprised of mostly water-insoluble polysaccharides (INS); in contrast, the presence of starch or starch + glucose + fructose resulted in little biofilm formation with minimal amounts of INS. However, the combination of starch + sucrose produced biofilms with more biomass and acidogenicity, and a higher content of INS than those grown in sucrose or sucrose + glucose (P < 0.05). The INS extracted from biofilms formed in the presence of starch + sucrose displayed a higher percentage of 3-linked branching (3,4-, 3,6-, and 3,4,6-linked glucose) compared to those from biofilms grown in sucrose or sucrose + glucose. Furthermore, biofilms grown in starch + sucrose expressed significantly higher levels of gtfB messenger RNA than sucrose-grown or sucrose + glucose-grown biofilms (P < 0.05). Conclusion: The combination of starch and sucrose has profound effects not only on the composition and structure of the polysaccharide matrix but also on gene expression of S. mutans within biofilms, which may enhance the cariogenic potential of dental biofilms.

    Original languageEnglish (US)
    Pages (from-to)206-212
    Number of pages7
    JournalOral Microbiology and Immunology
    Issue number3
    StatePublished - Jun 2008


    • Amylase
    • Biofilms
    • Starch
    • Streptococcus mutans

    ASJC Scopus subject areas

    • Microbiology
    • Immunology
    • General Dentistry
    • Microbiology (medical)


    Dive into the research topics of 'Influences of starch and sucrose on Streptococcus mutans biofilms'. Together they form a unique fingerprint.

    Cite this