Information bounds and asymptotically optimal procedures for detecting changes in decentralized decision systems

Research output: Contribution to journalConference articlepeer-review

Abstract

Information bounds and asymptotically optimal procedures for decentralized quickest change under different scenarios were discussed. The decentralized system with limited local memory, where the sensors do not have access to their past observations was considered. It was shown that in the decentralized decision system with Gaussian sensor observations, the detection delay of the monotone likelihood ratio quantizer (MLRQ) is at most π/2-1 ≈ 57% larger than that of the optimal centralized procedure. It was found that the method can be easily extended to non-Gaussian distributions.

Original languageEnglish (US)
Pages (from-to)249
Number of pages1
JournalIEEE International Symposium on Information Theory - Proceedings
StatePublished - 2004
EventProceedings - 2004 IEEE International Symposium on Information Theory - Chicago, IL, United States
Duration: Jun 27 2004Jul 2 2004

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Information bounds and asymptotically optimal procedures for detecting changes in decentralized decision systems'. Together they form a unique fingerprint.

Cite this