Integrated microfluidic probe station

C. M. Perrault, M. A. Qasaimeh, T. Brastaviceanu, K. Anderson, Y. Kabakibo, D. Juncker

Research output: Contribution to journalArticle

Abstract

The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution-thus hydrodynamically confining the microjet-and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

Original languageEnglish (US)
Article number115107
JournalReview of Scientific Instruments
Volume81
Issue number11
DOIs
StatePublished - Nov 2010

ASJC Scopus subject areas

  • Instrumentation

Fingerprint Dive into the research topics of 'Integrated microfluidic probe station'. Together they form a unique fingerprint.

  • Cite this

    Perrault, C. M., Qasaimeh, M. A., Brastaviceanu, T., Anderson, K., Kabakibo, Y., & Juncker, D. (2010). Integrated microfluidic probe station. Review of Scientific Instruments, 81(11), [115107]. https://doi.org/10.1063/1.3497302