Integrating associative learning signals across the brain

Research output: Contribution to journalReview articlepeer-review

Abstract

Associative learning is defined as the ability to link arbitrary stimuli or actions together in memory. The neural correlates of this fundamental form of plasticity were first described in the hippocampus during delay eye blink conditioning and have since been examined using a variety of tasks in both rats and monkeys. In monkeys, the neural correlates of associative learning have been studied using conditional motor learning tasks where animals learn to associate particular visual stimuli with particular motor responses (i.e., touch left or touch right). Similar tasks have also been used to examine learning-related plasticity in motor-related areas throughout the frontal lobe and striatum. Here, we review the patterns of learning-related activity seen in these diverse brain areas during conditional motor learning. While each of these areas exhibits strong associative learning signals, the differential patterns and time courses of these signals provides insight into the unique contribution of each area to associative learning.

Original languageEnglish (US)
Pages (from-to)842-850
Number of pages9
JournalHippocampus
Volume17
Issue number9
DOIs
StatePublished - 2007

Keywords

  • FEF
  • Hippocampus
  • Prefrontal cortex
  • Premotor cortex
  • SEF
  • Striatum

ASJC Scopus subject areas

  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Integrating associative learning signals across the brain'. Together they form a unique fingerprint.

Cite this