TY - JOUR
T1 - Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles
AU - Magzoub, Mazin
AU - Kilk, Kalle
AU - Eriksson, L. E.Göran
AU - Langel, Ülo
AU - Gräslund, Astrid
N1 - Funding Information:
We would like to thank Torbjörn Astlind for expert assistance with the spectroscopic experiments and Martina Lindqvist for expert help with the preliminary FTIR measurement. This study was supported by grants from the Swedish Natural Science Research Council and from the EU program contract No. MAS3-CT97-0156.
PY - 2001/5/2
Y1 - 2001/5/2
N2 - Certain short peptides, which are able to translocate across cell membranes with a low lytic activity, can be useful as carriers (vectors) for hydrophilic molecules. We have studied three such cell penetrating peptides: pAntp ('penetratin'), pIsl and transportan. pAntp and pIsl originate from the third helix of homeodomain proteins (Antennapedia and Isl-1, respectively). Transportan is a synthetic chimera (galanin and mastoparan). The peptides in the presence of various phospholipid vesicles (neutral and charged) and SDS micelles have been characterized by spectroscopic methods (fluorescence, EPR and CD). The dynamics of pAntp were monitored using an N-terminal spin label. In aqueous solution, the CD spectra of the three peptides show secondary structures dominated by random coil. With phospholipid vesicles, neutral as well as negatively charged, transportan gives up to 60% α-helix. pAntp and pIsl bind significantly only to negatively charged vesicles with an induction of around 60% β-sheet-like secondary structure. With all three peptides, SDS micelles stabilize a high degree of α-helical structure. We conclude that the exact nature of any secondary structure induced by the membrane model systems is not directly correlated with the common transport property of these translocating peptides.
AB - Certain short peptides, which are able to translocate across cell membranes with a low lytic activity, can be useful as carriers (vectors) for hydrophilic molecules. We have studied three such cell penetrating peptides: pAntp ('penetratin'), pIsl and transportan. pAntp and pIsl originate from the third helix of homeodomain proteins (Antennapedia and Isl-1, respectively). Transportan is a synthetic chimera (galanin and mastoparan). The peptides in the presence of various phospholipid vesicles (neutral and charged) and SDS micelles have been characterized by spectroscopic methods (fluorescence, EPR and CD). The dynamics of pAntp were monitored using an N-terminal spin label. In aqueous solution, the CD spectra of the three peptides show secondary structures dominated by random coil. With phospholipid vesicles, neutral as well as negatively charged, transportan gives up to 60% α-helix. pAntp and pIsl bind significantly only to negatively charged vesicles with an induction of around 60% β-sheet-like secondary structure. With all three peptides, SDS micelles stabilize a high degree of α-helical structure. We conclude that the exact nature of any secondary structure induced by the membrane model systems is not directly correlated with the common transport property of these translocating peptides.
KW - Homeo-peptide
KW - Interaction
KW - Penetratin
KW - Phospholipid vesicle
KW - Secondary structure
KW - Transportan
UR - http://www.scopus.com/inward/record.url?scp=0035795727&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035795727&partnerID=8YFLogxK
U2 - 10.1016/S0005-2736(01)00304-2
DO - 10.1016/S0005-2736(01)00304-2
M3 - Article
C2 - 11334626
AN - SCOPUS:0035795727
SN - 0005-2736
VL - 1512
SP - 77
EP - 89
JO - Biochimica et Biophysica Acta - Biomembranes
JF - Biochimica et Biophysica Acta - Biomembranes
IS - 1
ER -