Intracrystalline incorporation of nacre protein hydrogels modifies the mechanical properties of calcite crystals: A microcompression study

Jared Risan, Gaurav Jain, Martin Pendola, John Spencer Evans

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The fracture toughness of mollusk shell nacre has been attributed to many factors, one of which is the intracrystalline incorporation of nacre-specific proteins. Although mechanical force measurements have been made on the nacre layer and on individual calcium carbonate crystals containing occluded organic molecules and macromolecules, there are few if any studies which examine the impact of occluded proteins on the mechanical properties of calcium carbonate crystals. To remedy this, we performed microcompression studies of calcite crystals grown in the presence and absence of two recombinant nacre proteins, r-AP7 (H. rufescens, intracrystalline proteome) and r-n16.3 (P. fucata, framework proteome), both of which are known aggregators that form hydrogel nanoinclusions within in vitro calcite. We find that, relative to protein-free calcite, the intracrystalline inclusion of either r-AP7 or r-n16.3 nacre protein hydrogels within the calcite crystals leads to a reduction in strength. However, nacre protein-modified crystals were found to exhibit elastic deformation under force compared to control scenarios, with no discernable differences noted between intracrystalline or framework protein-modified crystals. We conclude from our in vitro microcompression studies that the intracrystalline incorporation of nacre proteins can contribute to fracture-resistance of the crystalline phase by significantly reducing both modulus AND critical strength.

    Original languageEnglish (US)
    Pages (from-to)4191-4196
    Number of pages6
    JournalJournal of Materials Chemistry B
    Volume6
    Issue number25
    DOIs
    StatePublished - 2018

    ASJC Scopus subject areas

    • General Chemistry
    • Biomedical Engineering
    • General Materials Science

    Fingerprint

    Dive into the research topics of 'Intracrystalline incorporation of nacre protein hydrogels modifies the mechanical properties of calcite crystals: A microcompression study'. Together they form a unique fingerprint.

    Cite this