Investigating the Effect of Noise on the Training Performance of Hybrid Quantum Neural Networks

Muhammad Kashif, Emman Sychiuco, Muhammad Shafique

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Hybrid Quantum Neural Networks (HyQNNs) hold great promise for various quantum machine learning tasks, but their performance can be significantly affected by the quantum noise in NISQ devices. In this paper, we comprehensively analyze the influence of different quantum noise gates, including Phase Flip, Bit Flip, Phase Damping, Amplitude Damping, and the Depolarizing Channel, on the performance of HyQNNs. Our results reveal distinct and significant effects on HyQNNs training and validation accuracies across different probabilities of noise. For instance, the Phase Flip gate introduces phase errors, and we observe that HyQNNs exhibit resilience at higher probability (p = 1.0), adapting effectively to consistent noise patterns, whereas at intermediate probabilities, the performance declines. Bit Flip errors, represented by the Pauli X gate, impact HyQNNs in a similar way to that Phase Flip error gate. The HyQNNs, can adapt such kind of errors at maximum probability (p = 1.0). Unlike Phase and Bit Flip error gates, Phase Damping and Amplitude Damping gates disrupt quantum information, with HyQNNs demonstrating resilience at lower probabilities but facing challenges at higher probabilities. Amplitude Damping, in particular, poses efficiency and accuracy issues at higher probabilities, however with lowest probability (p =0.1),it has the least effect, i.e., HyQNNs, although not very effectively, but still tends to learn. The Depolarizing Channel proves most detrimental to HyQNNs performance, with limited or no training improvements. There was no training potential observed regardless of the probability of this noise gate. These findings underscore the critical need for advanced quantum error mitigation and resilience strategies in the design and training of HyQNNs, especially in environments prone to depolarizing noise. This paper quantitatively investigate that understanding the impact of quantum noise gates is essential for harnessing the full potential of quantum computing in practical applications.

Original languageEnglish (US)
Title of host publication2024 International Joint Conference on Neural Networks, IJCNN 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350359312
DOIs
StatePublished - 2024
Event2024 International Joint Conference on Neural Networks, IJCNN 2024 - Yokohama, Japan
Duration: Jun 30 2024Jul 5 2024

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2024 International Joint Conference on Neural Networks, IJCNN 2024
Country/TerritoryJapan
CityYokohama
Period6/30/247/5/24

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Investigating the Effect of Noise on the Training Performance of Hybrid Quantum Neural Networks'. Together they form a unique fingerprint.

Cite this