Investigation into the interaction between surface-bound alkylamines and gold nanoparticles

Ashavani Kumar, Saikat Mandal, P. R. Selvakannan, Renu Pasricha, A. B. Mandale, Murali Sastry

Research output: Contribution to journalArticlepeer-review


In addition to alkanethiols and phosphine derivatives, alkylamines have been investigated as capping agents in the synthesis of organically dispersible gold nanoparticles. However, reports pertaining to gold nanoparticle derivatization with alkylamines are relatively scarce and their interaction with the underlying gold support is poorly understood. In this paper, we attempt a more detailed examination of this problem and present results on the Fourier transform infrared spectroscopy, thermogravimetry, nuclear magnetic resonance, and X-ray photoemission (XPS) characterization of gold nanoparticles capped with the alkylamines laurylamine (LAM) and octadecylamine (ODA). The capping of the gold nanoparticles with the alkylamines was accomplished during phase transfer of aqueous gold nanoparticles to chloroform containing fatty amine molecules. Thermogravimetry and XPS analysis of purified powders of the amine-capped gold nanoparticles indicated the presence of two different modes of binding of the alkylamines with the gold surface. The weakly bound component is attributed to the formation of an electrostatic complex between protonated amine molecules and surface-bound AuCl4-/AuCl2- ions, while the more strongly bound species is tentatively assigned to a complex of the form [AuCl(NH2R)]. The alkylamine monolayer on the gold nanoparticle surface may be place exchanged with other amine derivatives present in solution.

Original languageEnglish (US)
Pages (from-to)6277-6282
Number of pages6
Issue number15
StatePublished - Jul 22 2003

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of 'Investigation into the interaction between surface-bound alkylamines and gold nanoparticles'. Together they form a unique fingerprint.

Cite this