TY - GEN
T1 - Is physical layer error correction sufficient for video multicast over IEEE 802.11g networks?
AU - Alay, Özgü
AU - Korakis, Thanasis
AU - Wang, Yao
AU - Panwar, Shivendra
PY - 2009
Y1 - 2009
N2 - Wireless video multicast enables delivery of popular events to many mobile users in a bandwidth efficient manner. However, providing good and stable video quality to a large number of users with varying channel conditions remains elusive. A promising solution to this problem is the use of packet level Forward Error Correction (FEC) mechanisms. However, the adjustment of the FEC rate is not a trivial issue due to the dynamic wireless environment. This decision becomes more complicated if we consider the multi-rate capability of the existing wireless LAN technology that adjusts the transmission rates based on the channel conditions and the coverage range. In this paper, we explore the dynamics of Forward Error Correction (FEC) schemes in multi-rate wireless local area networks. We study the fundamental behavior of a 802.11g network which already has embedded error correction in physical layer, under unicast and broadcast modes in a real outdoor environment. We then explore the effectiveness of packet level FEC over wireless networks with multi-rate capability. In order to evaluate the system quantitatively, we implemented a prototype using open source drivers, and ran experiments. Based on the experimental results, we provide guidelines on how to efficiently use FEC for wireless multicast services in order to improve the overall system performance. We argue that even there is a physical layer error correction, using a higher transmission rate together with stronger FEC is more efficient than using a lower transmission rate with weaker FEC for multicast.
AB - Wireless video multicast enables delivery of popular events to many mobile users in a bandwidth efficient manner. However, providing good and stable video quality to a large number of users with varying channel conditions remains elusive. A promising solution to this problem is the use of packet level Forward Error Correction (FEC) mechanisms. However, the adjustment of the FEC rate is not a trivial issue due to the dynamic wireless environment. This decision becomes more complicated if we consider the multi-rate capability of the existing wireless LAN technology that adjusts the transmission rates based on the channel conditions and the coverage range. In this paper, we explore the dynamics of Forward Error Correction (FEC) schemes in multi-rate wireless local area networks. We study the fundamental behavior of a 802.11g network which already has embedded error correction in physical layer, under unicast and broadcast modes in a real outdoor environment. We then explore the effectiveness of packet level FEC over wireless networks with multi-rate capability. In order to evaluate the system quantitatively, we implemented a prototype using open source drivers, and ran experiments. Based on the experimental results, we provide guidelines on how to efficiently use FEC for wireless multicast services in order to improve the overall system performance. We argue that even there is a physical layer error correction, using a higher transmission rate together with stronger FEC is more efficient than using a lower transmission rate with weaker FEC for multicast.
KW - Forward error correction (FEC)
KW - IEEE 802.11g
KW - Multicast
KW - Packet error rate (PER)
KW - Wireless networks
UR - http://www.scopus.com/inward/record.url?scp=63749109335&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=63749109335&partnerID=8YFLogxK
U2 - 10.1109/CCNC.2009.4784785
DO - 10.1109/CCNC.2009.4784785
M3 - Conference contribution
AN - SCOPUS:63749109335
SN - 9781424423095
T3 - 2009 6th IEEE Consumer Communications and Networking Conference, CCNC 2009
BT - 2009 6th IEEE Consumer Communications and Networking Conference, CCNC 2009
T2 - 2009 6th IEEE Consumer Communications and Networking Conference, CCNC 2009
Y2 - 10 January 2009 through 13 January 2009
ER -