TY - GEN
T1 - Iterative constructions and private data release
AU - Gupta, Anupam
AU - Roth, Aaron
AU - Ullman, Jonathan
PY - 2012
Y1 - 2012
N2 - In this paper we study the problem of approximately releasing the cut function of a graph while preserving differential privacy, and give new algorithms (and new analyses of existing algorithms) in both the interactive and non-interactive settings. Our algorithms in the interactive setting are achieved by revisiting the problem of releasing differentially private, approximate answers to a large number of queries on a database. We show that several algorithms for this problem fall into the same basic framework, and are based on the existence of objects which we call iterative database construction algorithms. We give a new generic framework in which new (efficient) IDC algorithms give rise to new (efficient) interactive private query release mechanisms. Our modular analysis simplifies and tightens the analysis of previous algorithms, leading to improved bounds. We then give a new IDC algorithm (and therefore a new private, interactive query release mechanism) based on the Frieze/Kannan low-rank matrix decomposition. This new release mechanism gives an improvement on prior work in a range of parameters where the size of the database is comparable to the size of the data universe (such as releasing all cut queries on dense graphs). We also give a non-interactive algorithm for efficiently releasing private synthetic data for graph cuts with error O(|V|1.5). Our algorithm is based on randomized response and a non-private implementation of the SDP-based, constant-factor approximation algorithm for cut-norm due to Alon and Naor. Finally, we give a reduction based on the IDC framework showing that an efficient, private algorithm for computing sufficiently accurate rank-1 matrix approximations would lead to an improved efficient algorithm for releasing private synthetic data for graph cuts. We leave finding such an algorithm as our main open problem.
AB - In this paper we study the problem of approximately releasing the cut function of a graph while preserving differential privacy, and give new algorithms (and new analyses of existing algorithms) in both the interactive and non-interactive settings. Our algorithms in the interactive setting are achieved by revisiting the problem of releasing differentially private, approximate answers to a large number of queries on a database. We show that several algorithms for this problem fall into the same basic framework, and are based on the existence of objects which we call iterative database construction algorithms. We give a new generic framework in which new (efficient) IDC algorithms give rise to new (efficient) interactive private query release mechanisms. Our modular analysis simplifies and tightens the analysis of previous algorithms, leading to improved bounds. We then give a new IDC algorithm (and therefore a new private, interactive query release mechanism) based on the Frieze/Kannan low-rank matrix decomposition. This new release mechanism gives an improvement on prior work in a range of parameters where the size of the database is comparable to the size of the data universe (such as releasing all cut queries on dense graphs). We also give a non-interactive algorithm for efficiently releasing private synthetic data for graph cuts with error O(|V|1.5). Our algorithm is based on randomized response and a non-private implementation of the SDP-based, constant-factor approximation algorithm for cut-norm due to Alon and Naor. Finally, we give a reduction based on the IDC framework showing that an efficient, private algorithm for computing sufficiently accurate rank-1 matrix approximations would lead to an improved efficient algorithm for releasing private synthetic data for graph cuts. We leave finding such an algorithm as our main open problem.
UR - http://www.scopus.com/inward/record.url?scp=84863421549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863421549&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-28914-9_19
DO - 10.1007/978-3-642-28914-9_19
M3 - Conference contribution
AN - SCOPUS:84863421549
SN - 9783642289132
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 339
EP - 356
BT - Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012, Proceedings
PB - Springer Verlag
T2 - 9th Theory of Cryptography Conference, TCC 2012
Y2 - 19 March 2012 through 21 March 2012
ER -