Abstract
This paper contributes a joint embedding model for predicting relations between a pair of entities in the scenario of relation inference. It differs from most standalone approaches which separately operate on either knowledge bases or free texts. The proposed model simultaneously learns low-dimensional vector representations for both triplets in knowledge repositories and the mentions of relations in free texts, so that we can leverage the evidence both resources to make more accurate predictions. We use NELL to evaluate the performance of our approach, compared with cutting-edge methods. Results of extensive experiments show that our model achieves significant improvement on relation extraction.
Original language | English (US) |
---|---|
Pages (from-to) | 186-191 |
Number of pages | 6 |
Journal | International Conference Recent Advances in Natural Language Processing, RANLP |
Volume | 2015-January |
State | Published - 2015 |
Event | 10th International Conference on Recent Advances in Natural Language Processing, RANLP 2015 - Hissar, Bulgaria Duration: Sep 7 2015 → Sep 9 2015 |
ASJC Scopus subject areas
- Software
- Computer Science Applications
- Artificial Intelligence
- Electrical and Electronic Engineering