TY - JOUR
T1 - Jointly Modeling Inter- & Intra-Modality Dependencies for Multi-modal Learning
AU - Madaan, Divyam
AU - Makino, Taro
AU - Chopra, Sumit
AU - Cho, Kyunghyun
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Supervised multi-modal learning involves mapping multiple modalities to a target label. Previous studies in this field have concentrated on capturing in isolation either the inter-modality dependencies (the relationships between different modalities and the label) or the intra-modality dependencies (the relationships within a single modality and the label). We argue that these conventional approaches that rely solely on either inter- or intra-modality dependencies may not be optimal in general. We view the multi-modal learning problem from the lens of generative models where we consider the target as a source of multiple modalities and the interaction between them. Towards that end, we propose inter- & intra-modality modeling (I2M2) framework, which captures and integrates both the inter- and intra-modality dependencies, leading to more accurate predictions. We evaluate our approach using real-world healthcare and vision-and-language datasets with state-of-the-art models, demonstrating superior performance over traditional methods focusing only on one type of modality dependency. The code is available at https://github.com/divyam3897/I2M2.
AB - Supervised multi-modal learning involves mapping multiple modalities to a target label. Previous studies in this field have concentrated on capturing in isolation either the inter-modality dependencies (the relationships between different modalities and the label) or the intra-modality dependencies (the relationships within a single modality and the label). We argue that these conventional approaches that rely solely on either inter- or intra-modality dependencies may not be optimal in general. We view the multi-modal learning problem from the lens of generative models where we consider the target as a source of multiple modalities and the interaction between them. Towards that end, we propose inter- & intra-modality modeling (I2M2) framework, which captures and integrates both the inter- and intra-modality dependencies, leading to more accurate predictions. We evaluate our approach using real-world healthcare and vision-and-language datasets with state-of-the-art models, demonstrating superior performance over traditional methods focusing only on one type of modality dependency. The code is available at https://github.com/divyam3897/I2M2.
UR - http://www.scopus.com/inward/record.url?scp=105000547554&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105000547554&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000547554
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -