Abstract
Anorexia nervosa (AN) is a mental illness with high rates of mortality and relapse, and no approved pharmacotherapy. Using the activity-based anorexia (ABA) model of AN, we previously showed that a single sub-anesthetic intraperitoneal injection of ketamine (30 mg/kg-KET, but not 3 mg/kg-KET), has an immediate and long-lasting effect of reducing anorexia-like behavior among adolescent female mice. We also showed previously that excitatory outflow from medial prefrontal cortex (mPFC) engages hunger-evoked hyperactivity, leading to the ABA condition of severe weight loss. Ketamine is known to target GluN2B-containing NMDARs (NR2B). Might synaptic plasticity involving NR2B in mPFC contribute to ketamine’s ameliorative effects? We addressed this question through electron microscopic immunocytochemical quantification of GluN2B at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (IN) in mPFC layer 1 of animals that underwent recovery from a second ABA induction (ABA2), 22 days after ketamine injection during the first ABA induction. The 30 mg/kg-KET evoked synaptic plasticity that differed for PN and IN, with changes revolving the cytoplasmic reserve pool of NR2B more than the postsynaptic membrane pool. Those individuals that suppressed hunger-evoked wheel running the most and increased food consumption during recovery from ABA2 the most showed the greatest increase of NR2B at PN and IN excitatory synapses. We hypothesize that 30 mg/kg-KET promotes long-lasting changes in the reserve cytoplasmic pool of NR2B that enables activity-dependent rapid strengthening of mPFC circuits underlying the more adaptive behavior of suppressed running and enhanced food consumption, in turn supporting better weight restoration.
Original language | English (US) |
---|---|
Pages (from-to) | 323-348 |
Number of pages | 26 |
Journal | Brain Structure and Function |
Volume | 229 |
Issue number | 2 |
DOIs | |
State | Published - Mar 2024 |
Keywords
- Activity-based anorexia
- Ketamine
- NR2B
- Post-embed immunogold electron microscopy
- Prelimbic
- Synaptic plasticity
ASJC Scopus subject areas
- Anatomy
- General Neuroscience
- Histology