TY - JOUR
T1 - Kinetic-equation approach to time-dependent correlation functions
AU - Lebowitz, J. L.
AU - Percus, J. K.
AU - Sykes, J.
N1 - Funding Information:
Supported in part by the U.S. Air Force Office of Scientific Research under Grant No. USAFOSR-68-1416.
Funding Information:
Supported by the U.S. Atomic Energy Commission, Contract No. AT(30-1)-1480.
Funding Information:
Supported in part by the U.S. Air Force Office of Scientific Research under Grant No. USAFOSR-68-1416.
Copyright:
Copyright 2007 Elsevier B.V., All rights reserved.
PY - 1969
Y1 - 1969
N2 - We have developed and, to some extent, solved a number of kinetic equations for displaced correlation functions in a classical fluid. These functions, of which the Van Hove neutron scattering function is a special example, are one-particle distribution functions obtained from a Gibbs ensemble which is initially, at t=0, in equilibrium except for one labeled particle whose distribution W(r→,v→) at t=0 differs from its equilibrium value ρh0(v→), where ρ is the average fluid density, and h0(v→) is the Maxwellian velocity distribution function. We investigate the time evolution of the (self-) distribution function of this labeled particle, fs(r→,v→,t), as well as the deviation from equilibrium, η(r→,v→,t), of the total one-particle distribution function. The latter represents the density of fluid particles, labeled and unlabeled, at position r→ and velocity v→. Since both fs and η are linear functionals of W, they will satisfy exactly a linear non-Markovian kinetic equation of the form f=Bf+0tdt′M(t′)f(t-t′). B is a time-in-dependent and M a time-dependent (memory) operator (nonsingular in t). Our kinetic equations (first- and higher-order) are based on neglecting or approximating M in such a way that the short-time behavior of fs and η is described exactly. The rationale behind this scheme is that our choice of initial ensemble is precisely of the type generally assumed in the "derivation" of kinetic equations. The calculation of B is straightforward and depends in a very important way on whether the interparticle potential in the fluid is smooth or contains a hard core. In the former case, the first-order kinetic equation is of the Vlasov type with an effective potential given by the equilibrium direct correlation function, while in the latter case, B contains, in addition, a linear Enskog-type collision term. We show that this Vlasov equation (also derived previously by many authors) gives a damping linear in the wave number k for small k instead of the hydrodynamic k2 dependence. The kinetic equation for systems with hard cores does not give correct hydrodynamic behavior. (For a one-dimensional system of hard rods, the first-order kinetic equation is exact.) We also obtain and solve a second-order kinetic equation, which is a generalized Vlasov-Fokker-Planck-type equation, for systems with continuous potentials.
AB - We have developed and, to some extent, solved a number of kinetic equations for displaced correlation functions in a classical fluid. These functions, of which the Van Hove neutron scattering function is a special example, are one-particle distribution functions obtained from a Gibbs ensemble which is initially, at t=0, in equilibrium except for one labeled particle whose distribution W(r→,v→) at t=0 differs from its equilibrium value ρh0(v→), where ρ is the average fluid density, and h0(v→) is the Maxwellian velocity distribution function. We investigate the time evolution of the (self-) distribution function of this labeled particle, fs(r→,v→,t), as well as the deviation from equilibrium, η(r→,v→,t), of the total one-particle distribution function. The latter represents the density of fluid particles, labeled and unlabeled, at position r→ and velocity v→. Since both fs and η are linear functionals of W, they will satisfy exactly a linear non-Markovian kinetic equation of the form f=Bf+0tdt′M(t′)f(t-t′). B is a time-in-dependent and M a time-dependent (memory) operator (nonsingular in t). Our kinetic equations (first- and higher-order) are based on neglecting or approximating M in such a way that the short-time behavior of fs and η is described exactly. The rationale behind this scheme is that our choice of initial ensemble is precisely of the type generally assumed in the "derivation" of kinetic equations. The calculation of B is straightforward and depends in a very important way on whether the interparticle potential in the fluid is smooth or contains a hard core. In the former case, the first-order kinetic equation is of the Vlasov type with an effective potential given by the equilibrium direct correlation function, while in the latter case, B contains, in addition, a linear Enskog-type collision term. We show that this Vlasov equation (also derived previously by many authors) gives a damping linear in the wave number k for small k instead of the hydrodynamic k2 dependence. The kinetic equation for systems with hard cores does not give correct hydrodynamic behavior. (For a one-dimensional system of hard rods, the first-order kinetic equation is exact.) We also obtain and solve a second-order kinetic equation, which is a generalized Vlasov-Fokker-Planck-type equation, for systems with continuous potentials.
UR - http://www.scopus.com/inward/record.url?scp=36049060291&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36049060291&partnerID=8YFLogxK
U2 - 10.1103/PhysRev.188.487
DO - 10.1103/PhysRev.188.487
M3 - Article
AN - SCOPUS:36049060291
SN - 0031-899X
VL - 188
SP - 487
EP - 504
JO - Physical Review
JF - Physical Review
IS - 1
ER -