KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions

Fangyuan Xu, Kyle Lo, Luca Soldaini, Bailey Kuehl, Eunsol Choi, David Wadden

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Large language models (LLMs) adapted to follow user instructions are now widely deployed as conversational agents. In this work, we examine one increasingly common instruction-following task: providing writing assistance to compose a long-form answer. To evaluate the capabilities of current LLMs on this task, we construct KIWI, a dataset of knowledge-intensive writing instructions in the NLP research domain. Given a question, an initial model-generated answer and a set of relevant papers, an expert annotator iteratively issues instructions for the model to revise and improve its answer. We collect 1,260 interaction turns from 234 interaction sessions with three state-of-the-art LLMs. Each turn includes a user instruction, a model response, and a human evaluation of the model response. Through a detailed analysis of the collected responses, we find that all models struggle to incorporate new information into an existing answer, and to perform precise and unambiguous edits. Further, we find that models struggle to judge whether their outputs successfully followed user instructions, with accuracy at least 10 points short of human agreement. Our findings indicate that KIWI will be a valuable resource to measure progress and improve LLMs' instruction-following capabilities for knowledge intensive writing tasks.

Original languageEnglish (US)
Title of host publication62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference
EditorsLun-Wei Ku, Andre Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages12969-12990
Number of pages22
ISBN (Electronic)9798891760998
StatePublished - 2024
EventFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand
Duration: Aug 11 2024Aug 16 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

ConferenceFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityHybrid, Bangkok
Period8/11/248/16/24

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions'. Together they form a unique fingerprint.

Cite this