TY - JOUR
T1 - Krivine schemes are optimal
AU - Naor, Assaf
AU - Regev, Oded
N1 - Publisher Copyright:
© 2014 American Mathematical Society.
PY - 2014
Y1 - 2014
N2 - It is shown that for every k ∈ ℕ there exists a Borel probability measure μ on {−1, 1}ℝk × {−1, 1}ℝk such that for every m, n ∈ ℕ and x1,...,xm, y1,..., yn ∈ Sm+n−1 there exist x′1,..., x′m, y′1,..., y′n ∈ S m+n−1 such that if G : ℝm+n → ℝk is a random k × (m + n) matrix whose entries are i.i.d. standard Gaussian random variables, then for all (i, j) ∈ {1,...,m} × {1,...,n} we have where KG is the real Grothendieck constant and C ∈ (0, ∞) is a universal constant. This establishes that Krivine’s rounding method yields an arbitrarily good approximation of KG.
AB - It is shown that for every k ∈ ℕ there exists a Borel probability measure μ on {−1, 1}ℝk × {−1, 1}ℝk such that for every m, n ∈ ℕ and x1,...,xm, y1,..., yn ∈ Sm+n−1 there exist x′1,..., x′m, y′1,..., y′n ∈ S m+n−1 such that if G : ℝm+n → ℝk is a random k × (m + n) matrix whose entries are i.i.d. standard Gaussian random variables, then for all (i, j) ∈ {1,...,m} × {1,...,n} we have where KG is the real Grothendieck constant and C ∈ (0, ∞) is a universal constant. This establishes that Krivine’s rounding method yields an arbitrarily good approximation of KG.
UR - http://www.scopus.com/inward/record.url?scp=84922977166&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922977166&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-2014-12169-1
DO - 10.1090/S0002-9939-2014-12169-1
M3 - Article
AN - SCOPUS:84922977166
SN - 0002-9939
VL - 142
SP - 4315
EP - 4320
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 12
ER -