Abstract
We consider symmetric simple exclusion processes with L = ρ̄Nd particles in a periodic d-dimensional lattice of width N. We perform the diffusive hydrodynamic scaling of space and time. The initial condition is arbitrary and is typically far away form equilibrium. It specifies in the scaling limit a density profile on the d-dimensional torus. We are interested in the large deviations of the empirical process, N-d[∑L1 δxi(.)] as random variables taking values in the space of measures on D[0.1]. We prove a large deviation principle, with a rate function that is more or less universal, involving explicity besides the initial profile, only such canonical objects as bulk and self diffusion coefficients.
Original language | English (US) |
---|---|
Pages (from-to) | 1-84 |
Number of pages | 84 |
Journal | Probability Theory and Related Fields |
Volume | 113 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1999 |
ASJC Scopus subject areas
- Analysis
- Statistics and Probability
- Statistics, Probability and Uncertainty