Latent-variable non-autoregressive neural machine translation with deterministic inference using a delta posterior

Raphael Shu, Jason Lee, Hideki Nakayama, Kyunghyun Cho

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Although neural machine translation models reached high translation quality, the autoregressive nature makes inference difficult to parallelize and leads to high translation latency. Inspired by recent refinement-based approaches, we propose LaNMT, a latent-variable non-autoregressive model with continuous latent variables and deterministic inference procedure. In contrast to existing approaches, we use a deterministic inference algorithm to find the target sequence that maximizes the lowerbound to the log-probability. During inference, the length of translation automatically adapts itself. Our experiments show that the lowerbound can be greatly increased by running the inference algorithm, resulting in significantly improved translation quality. Our proposed model closes the performance gap between non-autoregressive and autoregressive approaches on ASPEC Ja-En dataset with 8.6x faster decoding. On WMT'14 En-De dataset, our model narrows the gap with autoregressive baseline to 2.0 BLEU points with 12.5x speedup. By decoding multiple initial latent variables in parallel and rescore using a teacher model, the proposed model further brings the gap down to 1.0 BLEU point on WMT'14 En-De task with 6.8x speedup.

Original languageEnglish (US)
Title of host publicationAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PublisherAAAI press
Pages8846-8853
Number of pages8
ISBN (Electronic)9781577358350
StatePublished - 2020
Event34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, United States
Duration: Feb 7 2020Feb 12 2020

Publication series

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Conference

Conference34th AAAI Conference on Artificial Intelligence, AAAI 2020
Country/TerritoryUnited States
CityNew York
Period2/7/202/12/20

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Latent-variable non-autoregressive neural machine translation with deterministic inference using a delta posterior'. Together they form a unique fingerprint.

Cite this