TY - GEN
T1 - Learned-norm pooling for deep feedforward and recurrent neural networks
AU - Gulcehre, Caglar
AU - Cho, Kyunghyun
AU - Pascanu, Razvan
AU - Bengio, Yoshua
PY - 2014
Y1 - 2014
N2 - In this paper we propose and investigate a novel nonlinear unit, called Lp unit, for deep neural networks. The proposed L p unit receives signals from several projections of a subset of units in the layer below and computes a normalized L p norm. We notice two interesting interpretations of the Lp unit. First, the proposed unit can be understood as a generalization of a number of conventional pooling operators such as average, root-mean-square and max pooling widely used in, for instance, convolutional neural networks (CNN), HMAX models and neocognitrons. Furthermore, the L p unit is, to a certain degree, similar to the recently proposed maxout unit [13] which achieved the state-of-the-art object recognition results on a number of benchmark datasets. Secondly, we provide a geometrical interpretation of the activation function based on which we argue that the L p unit is more efficient at representing complex, nonlinear separating boundaries. Each L p unit defines a superelliptic boundary, with its exact shape defined by the order p. We claim that this makes it possible to model arbitrarily shaped, curved boundaries more efficiently by combining a few L p units of different orders. This insight justifies the need for learning different orders for each unit in the model. We empirically evaluate the proposed L p units on a number of datasets and show that multilayer perceptrons (MLP) consisting of the L p units achieve the state-of-the-art results on a number of benchmark datasets. Furthermore, we evaluate the proposed L p unit on the recently proposed deep recurrent neural networks (RNN).
AB - In this paper we propose and investigate a novel nonlinear unit, called Lp unit, for deep neural networks. The proposed L p unit receives signals from several projections of a subset of units in the layer below and computes a normalized L p norm. We notice two interesting interpretations of the Lp unit. First, the proposed unit can be understood as a generalization of a number of conventional pooling operators such as average, root-mean-square and max pooling widely used in, for instance, convolutional neural networks (CNN), HMAX models and neocognitrons. Furthermore, the L p unit is, to a certain degree, similar to the recently proposed maxout unit [13] which achieved the state-of-the-art object recognition results on a number of benchmark datasets. Secondly, we provide a geometrical interpretation of the activation function based on which we argue that the L p unit is more efficient at representing complex, nonlinear separating boundaries. Each L p unit defines a superelliptic boundary, with its exact shape defined by the order p. We claim that this makes it possible to model arbitrarily shaped, curved boundaries more efficiently by combining a few L p units of different orders. This insight justifies the need for learning different orders for each unit in the model. We empirically evaluate the proposed L p units on a number of datasets and show that multilayer perceptrons (MLP) consisting of the L p units achieve the state-of-the-art results on a number of benchmark datasets. Furthermore, we evaluate the proposed L p unit on the recently proposed deep recurrent neural networks (RNN).
KW - deep learning
KW - multilayer perceptron
UR - http://www.scopus.com/inward/record.url?scp=84907016671&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907016671&partnerID=8YFLogxK
U2 - 10.1007/978-3-662-44848-9_34
DO - 10.1007/978-3-662-44848-9_34
M3 - Conference contribution
AN - SCOPUS:84907016671
SN - 9783662448472
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 530
EP - 546
BT - Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2014, Proceedings
PB - Springer Verlag
T2 - European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2014
Y2 - 15 September 2014 through 19 September 2014
ER -