Abstract
We present NeuroSAT, a message passing neural network that learns to solve SAT problems after only being trained as a classifier to predict satisfiability. Although it is not competitive with state-of-the-art SAT solvers, NeuroSAT can solve problems that are substantially larger and more difficult than it ever saw during training by simply running for more iterations. Moreover, NeuroSAT generalizes to novel distributions; after training only on random SAT problems, at test time it can solve SAT problems encoding graph coloring, clique detection, dominating set, and vertex cover problems, all on a range of distributions over small random graphs.
Original language | English (US) |
---|---|
State | Published - 2019 |
Event | 7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States Duration: May 6 2019 → May 9 2019 |
Conference
Conference | 7th International Conference on Learning Representations, ICLR 2019 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 5/6/19 → 5/9/19 |
ASJC Scopus subject areas
- Education
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics