Learning a smooth kernel regularizer for convolutional neural networks

Reuben Feinman, Brenden M. Lake

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Modern deep neural networks require a tremendous amount of data to train, often needing hundreds or thousands of labeled examples to learn an effective representation. For these networks to work with less data, more structure must be built into their architectures or learned from previous experience. The learned weights of convolutional neural networks (CNNs) trained on large datasets for object recognition contain a substantial amount of structure. These representations have parallels to simple cells in the primary visual cortex, where receptive fields are smooth and contain many regularities. Incorporating smoothness constraints over the kernel weights of modern CNN architectures is a promising way to improve their sample complexity. We propose a smooth kernel regularizer that encourages spatial correlations in convolution kernel weights. The correlation parameters of this regularizer are learned from previous experience, yielding a method with a hierarchical Bayesian interpretation. We show that our correlated regularizer can help constrain models for visual recognition, improving over an L2 regularization baseline.

Original languageEnglish (US)
Title of host publicationProceedings of the 41st Annual Meeting of the Cognitive Science Society
Subtitle of host publicationCreativity + Cognition + Computation, CogSci 2019
PublisherThe Cognitive Science Society
Pages1710-1716
Number of pages7
ISBN (Electronic)0991196775, 9780991196777
StatePublished - 2019
Event41st Annual Meeting of the Cognitive Science Society: Creativity + Cognition + Computation, CogSci 2019 - Montreal, Canada
Duration: Jul 24 2019Jul 27 2019

Publication series

NameProceedings of the 41st Annual Meeting of the Cognitive Science Society: Creativity + Cognition + Computation, CogSci 2019

Conference

Conference41st Annual Meeting of the Cognitive Science Society: Creativity + Cognition + Computation, CogSci 2019
Country/TerritoryCanada
CityMontreal
Period7/24/197/27/19

Keywords

  • convolutional neural networks
  • model priors
  • regularization
  • visual recognition

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Learning a smooth kernel regularizer for convolutional neural networks'. Together they form a unique fingerprint.

Cite this