Learning-Augmented Approximation Algorithms for Maximum Cut and Related Problems

Vincent Cohen-Addad, Tommaso d'Orsi, Anupam Gupta, Euiwoong Lee, Debmalya Panigrahi

Research output: Contribution to journalConference articlepeer-review

Abstract

In recent years, there has been a surge of interest in the use of machine-learned predictions to bypass worst-case lower bounds for classical problems in combinatorial optimization. So far, the focus has mostly been on online algorithms, where information-theoretic barriers are overcome using predictions about the unknown future. In this paper, we consider the complementary question of using learned information to overcome computational barriers in the form of approximation hardness of polynomial-time algorithms for NP-hard (offline) problems. We show that noisy predictions about the optimal solution can be used to break classical hardness results for maximization problems such as the max-cut problem and more generally, maximization versions of constraint satisfaction problems (CSPs).

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Learning-Augmented Approximation Algorithms for Maximum Cut and Related Problems'. Together they form a unique fingerprint.

Cite this