Learning barycentric representations of 3D shapes for sketch-based 3D shape retrieval

Jin Xie, Guoxian Dai, Fan Zhu, Yi Fang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Retrieving 3D shapes with sketches is a challenging problem since 2D sketches and 3D shapes are from two heterogeneous domains, which results in large discrepancy between them. In this paper, we propose to learn barycenters of 2D projections of 3D shapes for sketch-based 3D shape retrieval. Specifically, we first use two deep convolutional neural networks (CNNs) to extract deep features of sketches and 2D projections of 3D shapes. For 3D shapes, we then compute the Wasserstein barycenters of deep features of multiple projections to form a barycentric representation. Finally, by constructing a metric network, a discriminative loss is formulated on the Wasserstein barycenters of 3D shapes and sketches in the deep feature space to learn discriminative and compact 3D shape and sketch features for retrieval. The proposed method is evaluated on the SHREC'13 and SHREC'14 sketch track benchmark datasets. Compared to the state-of-the-art methods, our proposed method can significantly improve the retrieval performance.

Original languageEnglish (US)
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3615-3623
Number of pages9
ISBN (Electronic)9781538604571
DOIs
StatePublished - Nov 6 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
CountryUnited States
CityHonolulu
Period7/21/177/26/17

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Learning barycentric representations of 3D shapes for sketch-based 3D shape retrieval'. Together they form a unique fingerprint.

Cite this