Learning Inductive Biases with Simple Neural Networks

Reuben Feinman, Brenden M. Lake

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

People use rich prior knowledge about the world in order to efficiently learn new concepts. These priors-also known as “inductive biases”-pertain to the space of internal models considered by a learner, and they help the learner make inferences that go beyond the observed data. A recent study found that deep neural networks optimized for object recognition develop the shape bias (Ritter et al., 2017), an inductive bias possessed by children that plays an important role in early word learning. However, these networks use unrealistically large quantities of training data, and the conditions required for these biases to develop are not well understood. Moreover, it is unclear how the learning dynamics of these networks relate to developmental processes in childhood. We investigate the development and influence of the shape bias in neural networks using controlled datasets of abstract patterns and synthetic images, allowing us to systematically vary the quantity and form of the experience provided to the learning algorithms. We find that simple neural networks develop a shape bias after seeing as few as 3 examples of 4 object categories. The development of these biases predicts the onset of vocabulary acceleration in our networks, consistent with the developmental process in children.

Original languageEnglish (US)
Title of host publicationProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018
PublisherThe Cognitive Science Society
Pages1657-1662
Number of pages6
ISBN (Electronic)9780991196784
StatePublished - 2018
Event40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018 - Madison, United States
Duration: Jul 25 2018Jul 28 2018

Publication series

NameProceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018

Conference

Conference40th Annual Meeting of the Cognitive Science Society: Changing Minds, CogSci 2018
Country/TerritoryUnited States
CityMadison
Period7/25/187/28/18

Keywords

  • inductive biases
  • learning-to-learn
  • neural networks
  • word learning

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Learning Inductive Biases with Simple Neural Networks'. Together they form a unique fingerprint.

Cite this