Learning Long-Horizon Predictions for Quadrotor Dynamics

Pratyaksh Prabhav Rao, Alessandro Saviolo, Tommaso Castiglione Ferrari, Giuseppe Loianno

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Accurate modeling of system dynamics is crucial for achieving high-performance planning and control of robotic systems. Although existing data-driven approaches represent a promising approach for modeling dynamics, their accuracy is limited to a short prediction horizon, overlooking the impact of compounding prediction errors over longer prediction horizons. Strategies to mitigate these cumulative errors remain underexplored. To bridge this gap, in this paper, we study the key design choices for efficiently learning long-horizon prediction dynamics for quadrotors. Specifically, we analyze the impact of multiple architectures, historical data, and multi-step loss formulation. We show that sequential modeling techniques showcase their advantage in minimizing compounding errors compared to other types of solutions. Furthermore, we propose a novel decoupled dynamics learning approach, which further simplifies the learning process while also enhancing the approach modularity. Extensive experiments and ablation studies on real-world quadrotor data demonstrate the versatility and precision of the proposed approach. Our outcomes offer several insights and methodologies for enhancing long-term predictive accuracy of learned quadrotor dynamics for planning and control.

Original languageEnglish (US)
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages12758-12765
Number of pages8
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: Oct 14 2024Oct 18 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period10/14/2410/18/24

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Learning Long-Horizon Predictions for Quadrotor Dynamics'. Together they form a unique fingerprint.

Cite this