Learning mean-field games

Xin Guo, Anran Hu, Renyuan Xu, Junzi Zhang

Research output: Contribution to journalConference articlepeer-review

Abstract

This paper presents a general mean-field game (GMFG) framework for simultaneous learning and decision-making in stochastic games with a large population. It first establishes the existence of a unique Nash Equilibrium to this GMFG, and explains that naively combining Q-learning with the fixed-point approach in classical MFGs yields unstable algorithms. It then proposes a Q-learning algorithm with Boltzmann policy (GMF-Q), with analysis of convergence property and computational complexity. The experiments on repeated Ad auction problems demonstrate that this GMF-Q algorithm is efficient and robust in terms of convergence and learning accuracy. Moreover, its performance is superior in convergence, stability, and learning ability, when compared with existing algorithms for multi-agent reinforcement learning.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Learning mean-field games'. Together they form a unique fingerprint.

Cite this