Learning multiagent communication with backpropagation

Sainbayar Sukhbaatar, Arthur Szlam, Rob Fergus

Research output: Contribution to journalConference articlepeer-review

Abstract

Many tasks in AI require the collaboration of multiple agents. Typically, the communication protocol between agents is manually specified and not altered during training. In this paper we explore a simple neural model, called CommNet, that uses continuous communication for fully cooperative tasks. The model consists of multiple agents and the communication between them is learned alongside their policy. We apply this model to a diverse set of tasks, demonstrating the ability of the agents to learn to communicate amongst themselves, yielding improved performance over non-communicative agents and baselines. In some cases, it is possible to interpret the language devised by the agents, revealing simple but effective strategies for solving the task at hand.

Original languageEnglish (US)
Pages (from-to)2252-2260
Number of pages9
JournalAdvances in Neural Information Processing Systems
StatePublished - 2016
Event30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain
Duration: Dec 5 2016Dec 10 2016

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Learning multiagent communication with backpropagation'. Together they form a unique fingerprint.

Cite this