TY - GEN
T1 - Learning object-specific distance from a monocular image
AU - Zhu, Jing
AU - Fang, Yi
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - Environment perception, including object detection and distance estimation, is one of the most crucial tasks for autonomous driving. Many attentions have been paid on the object detection task, but distance estimation only arouse few interests in the computer vision community. Observing that the traditional inverse perspective mapping algorithm performs poorly for objects far away from the camera or on the curved road, in this paper, we address the challenging distance estimation problem by developing the first end-to-end learning-based model to directly predict distances for given objects in the images. Besides the introduction of a learning-based base model, we further design an enhanced model with a keypoint regressor, where a projection loss is defined to enforce a better distance estimation, especially for objects close to the camera. To facilitate the research on this task, we construct the extented KITTI and nuScenes (mini) object detection datasets with a distance for each object. Our experiments demonstrate that our proposed methods outperform alternative approaches (e.g., the traditional IPM, SVR) on object-specific distance estimation, particularly for the challenging cases that objects are on a curved road. Moreover, the performance margin implies the effectiveness of our enhanced method.
AB - Environment perception, including object detection and distance estimation, is one of the most crucial tasks for autonomous driving. Many attentions have been paid on the object detection task, but distance estimation only arouse few interests in the computer vision community. Observing that the traditional inverse perspective mapping algorithm performs poorly for objects far away from the camera or on the curved road, in this paper, we address the challenging distance estimation problem by developing the first end-to-end learning-based model to directly predict distances for given objects in the images. Besides the introduction of a learning-based base model, we further design an enhanced model with a keypoint regressor, where a projection loss is defined to enforce a better distance estimation, especially for objects close to the camera. To facilitate the research on this task, we construct the extented KITTI and nuScenes (mini) object detection datasets with a distance for each object. Our experiments demonstrate that our proposed methods outperform alternative approaches (e.g., the traditional IPM, SVR) on object-specific distance estimation, particularly for the challenging cases that objects are on a curved road. Moreover, the performance margin implies the effectiveness of our enhanced method.
UR - http://www.scopus.com/inward/record.url?scp=85081904088&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081904088&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2019.00394
DO - 10.1109/ICCV.2019.00394
M3 - Conference contribution
AN - SCOPUS:85081904088
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 3838
EP - 3847
BT - Proceedings - 2019 International Conference on Computer Vision, ICCV 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Y2 - 27 October 2019 through 2 November 2019
ER -