Abstract
Using visual model-based learning for deformable object manipulation is challenging due to difficulties in learning plannable visual representations along with complex dynamic models. In this work, we propose a new learning framework that jointly optimizes both the visual representation model and the dynamics model using contrastive estimation. Using simulation data collected by randomly perturbing deformable objects on a table, we learn latent dynamics models for these objects in an offline fashion. Then, using the learned models, we use simple model-based planning to solve challenging deformable object manipulation tasks such as spreading ropes and cloths. Experimentally, we show substantial improvements in performance over standard model-based learning techniques across our rope and cloth manipulation suite. Finally, we transfer our visual manipulation policies trained on data purely collected in simulation to a real PR2 robot through domain randomization.
Original language | English (US) |
---|---|
Pages (from-to) | 564-574 |
Number of pages | 11 |
Journal | Proceedings of Machine Learning Research |
Volume | 155 |
State | Published - 2020 |
Event | 4th Conference on Robot Learning, CoRL 2020 - Virtual, Online, United States Duration: Nov 16 2020 → Nov 18 2020 |
Keywords
- Model-based reinforcement learning
- contrastive estimation
- deformable object manipulation
ASJC Scopus subject areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability