Learning simple algorithms from examples

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, Rob Fergus

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present an approach for learning simple algorithms such as copying, multi-digit addition and single digit multiplication directly from examples. Our framework consists of a set of interfaces, accessed by a controller. Typical interfaces are 1-D tapes or 2-D grids that hold the input and output data. For the controller, we explore a range of neural network-based models which vary in their ability to abstract the underlying algorithm from training instances and generalize to test examples with many thousands of digits. The controller is trained using Q-learning with several enhancements and we show that the bottleneck is in the capabilities of the controller rather than in the search incurred by Q-learning.

Original languageEnglish (US)
Title of host publication33rd International Conference on Machine Learning, ICML 2016
EditorsMaria Florina Balcan, Kilian Q. Weinberger
PublisherInternational Machine Learning Society (IMLS)
Pages639-647
Number of pages9
ISBN (Electronic)9781510829008
StatePublished - 2016
Event33rd International Conference on Machine Learning, ICML 2016 - New York City, United States
Duration: Jun 19 2016Jun 24 2016

Publication series

Name33rd International Conference on Machine Learning, ICML 2016
Volume1

Other

Other33rd International Conference on Machine Learning, ICML 2016
Country/TerritoryUnited States
CityNew York City
Period6/19/166/24/16

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Learning simple algorithms from examples'. Together they form a unique fingerprint.

Cite this