Learning the Universe: GalactISM Simulations of Resolved Star Formation and Galactic Outflows across Main-sequence and Quenched Galactic Environments

Sarah M.R. Jeffreson, Eve C. Ostriker, Chang Goo Kim, Jindra Gensior, Greg L. Bryan, Timothy A. Davis, Lars Hernquist, Sultan Hassan

Research output: Contribution to journalArticlepeer-review

Abstract

We present a suite of six high-resolution chemodynamical simulations of isolated galaxies, spanning observed disk-dominated environments on the star-forming main sequence, as well as quenched, bulge-dominated environments. We compare and contrast the physics driving star formation and stellar feedback among the galaxies, with a view to modeling these processes in cosmological simulations. We find that the mass loading of galactic outflows is coupled to the clustering of supernova explosions, which varies strongly with the rate of galactic rotation Ω = v circ/R via the Toomre length, leading to smoother gas disks in the bulge-dominated galaxies. This sets an equation of state in the star-forming gas that also varies strongly with Ω, so that the bulge-dominated galaxies have higher midplane densities, lower velocity dispersions, and higher molecular gas fractions than their main-sequence counterparts. The star formation rate in five out of six galaxies is independent of Ω and is consistent with regulation by the midplane gas pressure alone. In the sixth galaxy, which has the most centrally concentrated bulge and thus the highest Ω, we reproduce dynamical suppression of the star formation efficiency in agreement with observations. This produces a transition away from pressure-regulated star formation.

Original languageEnglish (US)
Article number113
JournalAstrophysical Journal
Volume975
Issue number1
DOIs
StatePublished - Nov 1 2024

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Learning the Universe: GalactISM Simulations of Resolved Star Formation and Galactic Outflows across Main-sequence and Quenched Galactic Environments'. Together they form a unique fingerprint.

Cite this