Abstract
Training deep feature hierarchies to solve supervised learning tasks has achieved state of the art performance on many problems in computer vision. However, a principled way in which to train such hierarchies in the unsupervised setting has remained elusive. In this work we suggest a new architecture and loss for training deep feature hierarchies that linearize the transformations observed in unlabeled natural video sequences. This is done by training a generative model to predict video frames. We also address the problem of inherent uncertainty in prediction by introducing latent variables that are non-deterministic functions of the input into the network architecture.
Original language | English (US) |
---|---|
Pages (from-to) | 1234-1242 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2015-January |
State | Published - 2015 |
Event | 29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada Duration: Dec 7 2015 → Dec 12 2015 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing