Learning to Manipulate Deformable Objects without Demonstrations

Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, Pieter Abbeel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper we tackle the problem of deformable object manipulation through model-free visual reinforcement learning (RL). In order to circumvent the sample inefficiency of RL, we propose two key ideas that accelerate learning. First, we propose an iterative pick-place action space that encodes the conditional relationship between picking and placing on deformable objects. The explicit structural encoding enables faster learning under complex object dynamics. Second, instead of jointly learning both the pick and the place locations, we only explicitly learn the placing policy conditioned on random pick points. Then, by selecting the pick point that has Maximal Value under Placing (MVP), we obtain our picking policy. This provides us with an informed picking policy during testing, while using only random pick points during training. Experimentally, this learning framework obtains an order of magnitude faster learning compared to independent action-spaces on our suite of deformable object manipulation tasks with visual RGB observations. Finally, using domain randomization, we transfer our policies to a real PR2 robot for challenging cloth and rope coverage tasks, and demonstrate significant improvements over standard RL techniques on average coverage.

Original languageEnglish (US)
Title of host publicationRobotics
Subtitle of host publicationScience and Systems XVI
EditorsMarc Toussaint, Antonio Bicchi, Tucker Hermans
PublisherMIT Press Journals
ISBN (Print)9780992374761
DOIs
StatePublished - 2020
Event16th Robotics: Science and Systems, RSS 2020 - Virtual, Online
Duration: Jul 12 2020Jul 16 2020

Publication series

NameRobotics: Science and Systems
ISSN (Electronic)2330-765X

Conference

Conference16th Robotics: Science and Systems, RSS 2020
CityVirtual, Online
Period7/12/207/16/20

ASJC Scopus subject areas

  • Artificial Intelligence
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Learning to Manipulate Deformable Objects without Demonstrations'. Together they form a unique fingerprint.

Cite this