Learning to search in branch-and-bound algorithms

He He, Hal Daumé, Jason Eisner

Research output: Contribution to journalConference articlepeer-review


Branch-and-bound is a widely used method in combinatorial optimization, including mixed integer programming, structured prediction and MAP inference. While most work has been focused on developing problem-specific techniques, little is known about how to systematically design the node searching strategy on a branch-and-bound tree. We address the key challenge of learning an adaptive node searching order for any class of problem solvable by branch-and-bound. Our strategies are learned by imitation learning. We apply our algorithm to linear programming based branch-and-bound for solving mixed integer programs (MIP). We compare our method with one of the fastest open-source solvers, SCIP; and a very efficient commercial solver, Gurobi. We demonstrate that our approach achieves better solutions faster on four MIP libraries.

Original languageEnglish (US)
Pages (from-to)3293-3301
Number of pages9
JournalAdvances in Neural Information Processing Systems
Issue numberJanuary
StatePublished - 2014
Event28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada
Duration: Dec 8 2014Dec 13 2014

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Learning to search in branch-and-bound algorithms'. Together they form a unique fingerprint.

Cite this