TY - JOUR
T1 - Length scales and self-organization in dense suspension flows
AU - Düring, Gustavo
AU - Lerner, Edan
AU - Wyart, Matthieu
PY - 2014/2/18
Y1 - 2014/2/18
N2 - Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its connection to the observed correlation length, we develop an analogy between suspension flows and the rigidity transition occurring when floppy networks are pulled, a transition believed to be associated with the stress stiffening of certain gels. After deriving the critical properties near the rigidity transition, we show numerically that suspension flows lie close to it. We find that this proximity causes a decoupling between viscosity and the correlation length of velocities ξ, which scales as the length lc characterizing the response to a local perturbation, previously predicted to follow lc∼1/zc-z∼p0.18, where p is the dimensionless particle pressure, z is the coordination of the contact network made by the particles, and zc is twice the spatial dimension. We confirm these predictions numerically and predict the existence of a larger length scale lr∼p with mild effects on velocity correlation and of a vanishing strain scale δγ∼1/p that characterizes decorrelation in flow.
AB - Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its connection to the observed correlation length, we develop an analogy between suspension flows and the rigidity transition occurring when floppy networks are pulled, a transition believed to be associated with the stress stiffening of certain gels. After deriving the critical properties near the rigidity transition, we show numerically that suspension flows lie close to it. We find that this proximity causes a decoupling between viscosity and the correlation length of velocities ξ, which scales as the length lc characterizing the response to a local perturbation, previously predicted to follow lc∼1/zc-z∼p0.18, where p is the dimensionless particle pressure, z is the coordination of the contact network made by the particles, and zc is twice the spatial dimension. We confirm these predictions numerically and predict the existence of a larger length scale lr∼p with mild effects on velocity correlation and of a vanishing strain scale δγ∼1/p that characterizes decorrelation in flow.
UR - http://www.scopus.com/inward/record.url?scp=84897008517&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897008517&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.89.022305
DO - 10.1103/PhysRevE.89.022305
M3 - Article
AN - SCOPUS:84897008517
SN - 1063-651X
VL - 89
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 2
M1 - 022305
ER -