Abstract
We introduce a new approach for on-line recognition of handwritten words written in unconstrained mixed style. The preprocessor performs a word-level normalization by fitting a model of the word structure using the EM algorithm. Words are then coded into low resolution "annotated images" where each pixel contains information about trajectory direction and curvature. The recognizer is a convolution network that can be spatially replicated. From the network output, a hidden Markov model produces word scores. The entire system is globally trained to minimize word-level errors.
Original language | English (US) |
---|---|
Pages (from-to) | 1289-1303 |
Number of pages | 15 |
Journal | Neural computation |
Volume | 7 |
Issue number | 6 |
DOIs | |
State | Published - Nov 1995 |
ASJC Scopus subject areas
- Arts and Humanities (miscellaneous)
- Cognitive Neuroscience