Leveraging contact forces for learning to grasp

Hamza Merzic, Miroslav Bogdanovic, Daniel Kappler, Ludovic Righetti, Jeannette Bohg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two-fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

Original languageEnglish (US)
Title of host publication2019 International Conference on Robotics and Automation, ICRA 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3615-3621
Number of pages7
ISBN (Electronic)9781538660263
DOIs
StatePublished - May 2019
Event2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Canada
Duration: May 20 2019May 24 2019

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2019-May
ISSN (Print)1050-4729

Conference

Conference2019 International Conference on Robotics and Automation, ICRA 2019
CountryCanada
CityMontreal
Period5/20/195/24/19

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Leveraging contact forces for learning to grasp'. Together they form a unique fingerprint.

  • Cite this

    Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., & Bohg, J. (2019). Leveraging contact forces for learning to grasp. In 2019 International Conference on Robotics and Automation, ICRA 2019 (pp. 3615-3621). [8793733] (Proceedings - IEEE International Conference on Robotics and Automation; Vol. 2019-May). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICRA.2019.8793733