Abstract
Controlling lateral interactions between lipid molecules in a bilayer membrane to guide membrane organization and domain formation is a key factor for studying and emulating membrane functionality in synthetic biological systems. Here, we demonstrate an approach to reversibly control lipid organization, domain formation, and membrane stiffness of phospholipid bilayer membranes using the photoswitchable phospholipid azo-PC. azo-PC contains an azobenzene group in the sn2 acyl chain that undergoes reversible photoisomerization on illumination with UV-A and visible light. We demonstrate that the concentration of the photolipid molecules and also the assembly and disassembly of photolipids into lipid domains can be monitored by UV-vis spectroscopy because of a blue shift induced by photolipid aggregation.
Original language | English (US) |
---|---|
Pages (from-to) | 13368-13374 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 34 |
Issue number | 44 |
DOIs | |
State | Published - Nov 6 2018 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry