Linear optimal tracking control: An adaptive dynamic programming approach

Weinan Gao, Zhong Ping Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution


This paper addresses the optimal output regulation problem of linear systems with unknown system dynamics. The exogenous signal is presumed to be generated by a continuous-time linear exosystem. Firstly, we formulate the linear optimal output regulation problem (LOORP). Then, we give an offline solution of LOORP to design the optimal static state-feedback servoregulator by solving an algebraic Riccati equation (ARE) and a regulator equation. Instead of solving these two equations directly, by using state, input and exogenous signals collected online, we employ an approximate/adaptive dynamic programming (ADP) technique to seek online approximations of above equations whereby we get the approximated optimal servoregulator. Rigorous stability analysis shows that the closed-loop linear system is exponentially stable. Also, the output of the plant asymptotically tracks the given reference. Simulation results demonstrate the effectiveness of the proposed approach.

Original languageEnglish (US)
Title of host publicationACC 2015 - 2015 American Control Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781479986842
StatePublished - Jul 28 2015
Event2015 American Control Conference, ACC 2015 - Chicago, United States
Duration: Jul 1 2015Jul 3 2015

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619


Other2015 American Control Conference, ACC 2015
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Electrical and Electronic Engineering


Dive into the research topics of 'Linear optimal tracking control: An adaptive dynamic programming approach'. Together they form a unique fingerprint.

Cite this