Linking In-context Learning in Transformers to Human Episodic Memory

Li Ji-An, Corey Y. Zhou, Marcus K. Benna, Marcelo G. Mattar

Research output: Contribution to journalConference articlepeer-review

Abstract

Understanding connections between artificial and biological intelligent systems can reveal fundamental principles of general intelligence. While many artificial intelligence models have a neuroscience counterpart, such connections are largely missing in Transformer models and the self-attention mechanism. Here, we examine the relationship between interacting attention heads and human episodic memory. We focus on induction heads, which contribute to in-context learning in Transformer-based large language models (LLMs). We demonstrate that induction heads are behaviorally, functionally, and mechanistically similar to the contextual maintenance and retrieval (CMR) model of human episodic memory. Our analyses of LLMs pre-trained on extensive text data show that CMR-like heads often emerge in the intermediate and late layers, qualitatively mirroring human memory biases. The ablation of CMR-like heads suggests their causal role in in-context learning. Our findings uncover a parallel between the computational mechanisms of LLMs and human memory, offering valuable insights into both research fields.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Linking In-context Learning in Transformers to Human Episodic Memory'. Together they form a unique fingerprint.

Cite this