TY - JOUR
T1 - Linking In-context Learning in Transformers to Human Episodic Memory
AU - Ji-An, Li
AU - Zhou, Corey Y.
AU - Benna, Marcus K.
AU - Mattar, Marcelo G.
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Understanding connections between artificial and biological intelligent systems can reveal fundamental principles of general intelligence. While many artificial intelligence models have a neuroscience counterpart, such connections are largely missing in Transformer models and the self-attention mechanism. Here, we examine the relationship between interacting attention heads and human episodic memory. We focus on induction heads, which contribute to in-context learning in Transformer-based large language models (LLMs). We demonstrate that induction heads are behaviorally, functionally, and mechanistically similar to the contextual maintenance and retrieval (CMR) model of human episodic memory. Our analyses of LLMs pre-trained on extensive text data show that CMR-like heads often emerge in the intermediate and late layers, qualitatively mirroring human memory biases. The ablation of CMR-like heads suggests their causal role in in-context learning. Our findings uncover a parallel between the computational mechanisms of LLMs and human memory, offering valuable insights into both research fields.
AB - Understanding connections between artificial and biological intelligent systems can reveal fundamental principles of general intelligence. While many artificial intelligence models have a neuroscience counterpart, such connections are largely missing in Transformer models and the self-attention mechanism. Here, we examine the relationship between interacting attention heads and human episodic memory. We focus on induction heads, which contribute to in-context learning in Transformer-based large language models (LLMs). We demonstrate that induction heads are behaviorally, functionally, and mechanistically similar to the contextual maintenance and retrieval (CMR) model of human episodic memory. Our analyses of LLMs pre-trained on extensive text data show that CMR-like heads often emerge in the intermediate and late layers, qualitatively mirroring human memory biases. The ablation of CMR-like heads suggests their causal role in in-context learning. Our findings uncover a parallel between the computational mechanisms of LLMs and human memory, offering valuable insights into both research fields.
UR - http://www.scopus.com/inward/record.url?scp=105000484707&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105000484707&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000484707
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -