Abstract
We construct local minimisers to certain variational problems. The method is quite general and relies on the theory of F-convergence. The approach is demonstrated through the model problem [formula ommittes] It is shown that in certain nonconvex domains The approach is demonstrated through the model problem Ω ⊂Rn and for ε small, there exist nonconstant localminimisers uε satisfying uε≃±1 except in a thin transition layer. The location of the layer is determined through the requirement that in the limit uε→u() the hypersurface separating the states u0= 1 and u0=-1 locally minimises surface area. Generalisations are discussed with, for example, vector-valued u and anisotropic perturbations replacing’∇u’2.
Original language | English (US) |
---|---|
Pages (from-to) | 69-84 |
Number of pages | 16 |
Journal | Proceedings of the Royal Society of Edinburgh: Section A Mathematics |
Volume | 111 |
Issue number | 1-2 |
DOIs | |
State | Published - 1989 |
ASJC Scopus subject areas
- General Mathematics