TY - JOUR
T1 - Local wellposedness in Sobolev space for the inhomogeneous non-resistive MHD equations on general domain
AU - Zhao, Weiren
N1 - Funding Information:
The author is partially supported by NSF of China under Grant 11571306.
Publisher Copyright:
© 2017 World Scientific Publishing Company.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - In this paper, we prove the local existence and uniqueness of the solution with discontinuous density for the inhomogeneous non-resistive magnetohydrodynamics (MHD) equations on a C2 bounded domain R3 or ? = R3, if the initial data (?0,u0,B0) L∞(?) × Hs(?) × W1,r(?) with s > 3 2 -3 r > 1 2 satisfies 0 < c0 ≤ ?0 ≤ C0 < +∞.
AB - In this paper, we prove the local existence and uniqueness of the solution with discontinuous density for the inhomogeneous non-resistive magnetohydrodynamics (MHD) equations on a C2 bounded domain R3 or ? = R3, if the initial data (?0,u0,B0) L∞(?) × Hs(?) × W1,r(?) with s > 3 2 -3 r > 1 2 satisfies 0 < c0 ≤ ?0 ≤ C0 < +∞.
KW - Local wellposedness
KW - inhomogeneous
KW - magnetohydrodynamics
KW - non-resistive
UR - http://www.scopus.com/inward/record.url?scp=85028606640&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028606640&partnerID=8YFLogxK
U2 - 10.1142/S0219199716500553
DO - 10.1142/S0219199716500553
M3 - Article
AN - SCOPUS:85028606640
SN - 0219-1997
VL - 19
JO - Communications in Contemporary Mathematics
JF - Communications in Contemporary Mathematics
IS - 6
M1 - 1650055
ER -