Local wellposedness in Sobolev space for the inhomogeneous non-resistive MHD equations on general domain

Weiren Zhao

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we prove the local existence and uniqueness of the solution with discontinuous density for the inhomogeneous non-resistive magnetohydrodynamics (MHD) equations on a C2 bounded domain R3 or ? = R3, if the initial data (?0,u0,B0) L∞(?) × Hs(?) × W1,r(?) with s > 3 2 -3 r > 1 2 satisfies 0 < c0 ≤ ?0 ≤ C0 < +∞.

Original languageEnglish (US)
Article number1650055
JournalCommunications in Contemporary Mathematics
Volume19
Issue number6
DOIs
StatePublished - Dec 1 2017

Keywords

  • Local wellposedness
  • inhomogeneous
  • magnetohydrodynamics
  • non-resistive

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Local wellposedness in Sobolev space for the inhomogeneous non-resistive MHD equations on general domain'. Together they form a unique fingerprint.

Cite this