Abstract
The site of the ribosomal gene cluster on embryonic metaphase chromosomes of Caenorhabditis elegans has been mapped by in situ hybridization using probe DNAs that have been nick-translated to incorporate biotin-labeled UTP. The hybridized probe DNA was detected by a double-layer fluorescent antibody technique. Since chromosomes from wild-type C. elegans embryos are indistinguishable, in situ hybridization was carried out with chromosomes from C. elegans strains carrying cytologically distinct translocation or duplication chromosomes in order to identify the right end of linkage group I as the site of the ribosomal genes. Chromosomes carrying a lethal mutation, let-209 I displayed smaller hybridization signals than wild-type, suggesting that these chromosomes carried a partial deficiency of the ribosomal gene cluster. A duplication of the ribosomal genes, eDp20(I;II) rescued let-209 homozygotes. Chromosomes carrying the alterations in the ribosomal genes were combined with mnT12(IV;X) to facilitate the mapping of genes in C. elegans by in situ hybridization. Linkage groups I and II are then labeled by the distinctive hybridization signals from the ribosomal probes, linkage groups IV and X are together distinguishable morphologically and linkage group V is labeled by hybridization to a 5S gene probe.
Original language | English (US) |
---|---|
Pages (from-to) | 1227-1234 |
Number of pages | 8 |
Journal | The EMBO journal |
Volume | 3 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1984 |
ASJC Scopus subject areas
- General Neuroscience
- Molecular Biology
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology