TY - JOUR
T1 - Long-Range Order in Nanocrystal Assemblies Determines Charge Transport of Films
AU - Sainato, Michela
AU - Shevitski, Brian
AU - Sahu, Ayaskanta
AU - Forster, Jason D.
AU - Aloni, Shaul
AU - Barillaro, Giuseppe
AU - Urban, Jeffrey J.
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/7/31
Y1 - 2017/7/31
N2 - Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2-3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mm × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Moreover, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.
AB - Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2-3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mm × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Moreover, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.
UR - http://www.scopus.com/inward/record.url?scp=85028935281&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028935281&partnerID=8YFLogxK
U2 - 10.1021/acsomega.7b00433
DO - 10.1021/acsomega.7b00433
M3 - Article
AN - SCOPUS:85028935281
SN - 2470-1343
VL - 2
SP - 3681
EP - 3690
JO - ACS Omega
JF - ACS Omega
IS - 7
ER -