Long-term efficient gene delivery using polyethylenimine with modified Tat peptide

Seiichi Yamano, Jisen Dai, Shigeru Hanatani, Ken Haku, Takuto Yamanaka, Mika Ishioka, Tadahiro Takayama, Carlo Yuvienco, Sachin Khapli, Amr M. Moursi, Jin K. Montclare

Research output: Contribution to journalArticlepeer-review

Abstract

Polyethylenimine (PEI), a cationic polymer, has been widely studied and shown great promise as an efficient gene delivery vehicle. Likewise, the HIV-1 Tat peptide, a cell-permeable peptide, has been successfully used for intracellular gene delivery. To improve the favorable properties of these two vectors, we combine PEI with the modified Tat peptide sequence bearing histidine and cysteine residues (mTat). Invitro mTat/PEI-mediated transfection was evaluated by luciferase expression plasmid in two cell types. mTat/PEI produced significant improvement (≈5-fold) in transfection efficiency of both cell lines with little cytotoxicity when compared to mTat alone, PEI alone, or four commercial reagents. The particle size of mTat/PEI/DNA complex was significantly smaller than mTat or PEI alone, and it was correlated with higher transfection efficiency. Filipin III, an inhibitor of caveolae-mediated endocytosis, significantly inhibited mTat/PEI transfection. In contrast, chlorpromazine, an inhibitor of clathrin-mediated endocytosis, did not. This suggested caveolae-mediated endocytosis as the transfection mechanism. Furthermore, the results of invivo studies showed that animals administered mTat/PEI/DNA intramuscularly had significantly higher and longer luciferase expression (≈7 months) than those with mTat/DNA, PEI/DNA, or DNA alone, without any associated toxicity. The combination of mTat with PEI could significantly improve transfection efficiency, expanding the potential use as a non-viral gene vector both invitro and invivo.

Original languageEnglish (US)
Pages (from-to)1705-1715
Number of pages11
JournalBiomaterials
Volume35
Issue number5
DOIs
StatePublished - Feb 2014

Keywords

  • Gene delivery
  • Non-viral vector
  • Plasmid DNA
  • Polyethylenimine
  • Tat peptide
  • Transfection

ASJC Scopus subject areas

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Long-term efficient gene delivery using polyethylenimine with modified Tat peptide'. Together they form a unique fingerprint.

Cite this